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� Introduction: what are comets and why do we care� Scheme for deriving abundance ratios from wide-field observa-
tions of comets� Progress

– Measure and model
�����

daughters OH 3080 Å,
���

,
[O I] 6300 Å� standard OH photodissociation rates are likely wrong� see puzzling tailward asymmetry

– Measure CO photodissociation product [C I] 9850 Å� [C I] 9850 Å is likely not just a photodissociation product,
at least in Hale-Bopp� To do
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Where do comets come from?

� The primordial solar nebula
� Nebular collapse, planetary formation
� Dynamical things happen, planet orbits change, etc.
� Leftover planetesimals

– Rocky asteroids (2–3.5 AU)

– Icy Kuiper belt objects (50–500 AU)

– Oort cloud objects (500–50,000 AU)� dynamically ejected by planets� primordial� interstellar
� Dynamical evolution
� Apparition
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What does a comet look like?

Based on what we see coming off of comets, they are:

� Mostly water
� 5–15% CO
�
	 � % � ��
�
	 � % Other molecules, including organics
�
� ��� % “dust”

– may or may not be similar to interstellar dust

– (as if interstellar dust has any typical form)
� More-or-less homogeneous

– comet fragments look like comets
� Dirty snowballs
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What happens to comets when they get close to the
sun?

� � � �
, CO, other volatiles sublime

– Form coma� more-or-less spherical distribution of gas� density ranges from near atmospheric to interplanetary� like a planetary atmosphere without gravity

– Ion tail� solar radiation and charge exchange with solar wind ions ionizes
some coma gas� ions accelerated by solar wind� acceleration moderated by collisions with neutrals

� Dust is liberated
� Comet nucleus often splits

– Is there a continuous size distribution from dust grain through comet
fragment?

� Comets evolve over many perihelion passages
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Fig. 1.— Comet Hale-Bopp image courtesy of H. Mikuz & B. Kambic
(http://www.amtsgym-sdbg.dk/as).
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Why study comets?

� Choose your favorite topic:

– Observational challenge: it moves

– Present day solar system dynamics

– Coma physics� atmospheric physics� atomic and molecular physics

– Surface physics� nucleus� dust
� Cometary composition can help answer questions about:

– Solar nebula

– Planetary formation

– Dynamical history
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How should we study comets

� In all wavebands

– Radio through X-ray

– Molecular rotation/vibration to charge exchange reactions with solar
wind ions

� At many resolutions

– Continuum solar radiation scattered from dust

– Abundance studies

– Line profiles for dynamics
� Polarization
� At many angular scales

– Nucleus structure ( � � � km)

– 0.5 AU diameter ��� � coma
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The UW/GSFC Hale-Bopp observing campaign

� Large campaign, PI Frank Scherb (Scherb et al. 1997; Morgenthaler et al.
2002)

� IR, optical, UV
� Sub arcsec using Mt. Wilson AO to 1 � using WHAM and Burrell Schmidt
� UV imaging spectropolarimetry with WISP sounding rocket
� HPOL 3200 Å-10,500 Å
� Resolving powers ( ������� ) from broad-band filters to 60,000
� Wide-field high resolving power using Fabry-Pérot spectrometers
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Scheme for deriving abundance ratios from wide-field
observations of comets

� Material outgasses from comet forming the coma
� Coma interacts with sunlight, dissociating and/or fluorescing
� Count all the photons produced in a few key lines
� Understand how photons relate to parent population
� Understand how outgassing rates relate to intrinsic abundance ratios
� Derive abundance ratios
� Need sensitive wide field high resolution spectrometry and imaging
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Water and carbon monoxide

� Comets are mostly water, 5–15% CO and 	 � % � ���
� UV sunlight photodissociates water into H, OH, H

�
, O (Table 1)

� Lines studied in this work:
���

, OH 3080Å, [O I] 6300 Å, [C I] 9850 Å
� ���

, OH 3080Åexcited by solar UV light (fluorescence)
� [O I], [C I] are not fluorescent: photodissociation products or collisionally

excited

Table 1. Photodissociation Branching Ratios

Reaction BR � Quiet Sun Active Sun Ref.  
�!��� " #%$'& �!�(" �*),+.-0/

. . . . . . . . . . BR1 0.050 0.067 H� � � " #%$'& � " �1�
. . . . . . . . . . . . . BR2 0.855 0.801 H�2� " #%$'& � " �*) + -0/

. . . . . . . . . . . . BR3 0.094 34343 M�2� " #%$'& � " �*) + -0/

. . . . . . . . . . . . BR 546 0.357 34343 M�2� " #%$'& � " �*)87:9;/
. . . . . . . . . . . BR4 0.662 0.513 V�2� " #%$'& � " �*) 7 9;/
. . . . . . . . . . . BR < 6 0.472 34343 M

� �=)?> +A@CBD/E" #%$'& � ),+F-0/E" �*),+G-
/
BR5 0.046 0.042 H

� �=)?> +A@CBD/E" #%$'& � ),+F-0/E" �*),+G-
/
BR � 6 0.123 0.123 T

� ��H" #%$0& � �*)8> +I@JBD/H" �*)A+K-0/
. . BR6 0.457 0.391 H

 H, Huebner et al. (1992); V, van Dishoeck & Dalgarno (1984); M Morgen-
thaler et al. (2001); T Tozzi, Feldman, & Festou (1998). The van Dishoeck &
Dalgarno OH cross sections have been calculated for a heliocentric velocity of
-14 LNM OQP + , appropriate for 1997 early March.
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Wide field Fabry-Pérot (FP) observations

� Telescopes

– WHAM (fig. 2)

– McMath-Pierce Solar telescope on Kitt Peak, Arizona (figs. 3–4)
� Instruments

– WHAM: 150 mm dual etalon Fabry-Pérot spectrometer, FOV=60 6 op-
erated in spectral and imaging modes

– McMath-Pierce: 50 mm dual etalon Fabry-Pérot spectrometer, FOV=4 6 .1
operated in spectral mode

– FP (ring) images recorded onto CCDs

Fig. 2.— The Wisconsin
���

Mapper (WHAM) at Kitt Peak National
Observatory (http://www.astro.wisc.edu/wham).
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Fig. 3.— McMath-Pierce Solar telescope. Figures courtesy of NOAO/
AURA/NSF.
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Fig. 4.— McMath-Pierce Solar telescope light path. Figure courtesy of
NOAO/AURA/NSF.
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Fabry-Pérot review (Roesler 1974)

� One etalon = two parallel, reflective plates of glass
� Spacing between plates =

-
, wavelength of light � determine angle of

transmission, R for order S :

T�U O ) R /WV S �
� - (1)

� Ideal transmission given by Airy function
� Spacing between plates can be varied by changing the pressure of a high

index of refraction gas (SF X )
� Multiple etalons used to increase resolving power
� Much larger input solid angle than diffractive spectrographs at the same

resolving power
� Large apertures (2-6 inches) mean phenomenal sensitivity
� Ideal for faint diffuse sources like cometary comae
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OH 3080 Å observations

� Narrow-band large-aperture (1 � ) OH 3080 Å filter images taken with Bur-
rell Schmidt telescope on Kitt Peak

� Tracked OH emission to cometocentric distances of �ZY �[� X km
� Aperture summation photometry and OH fluorescent efficiency ( \ factor)

gives coma model independent OH production rate, Q(OH)
� Data not consistent with single velocity spherical outflow (Haser 1957)

models–implies accelerating flow (Harris et al. 2002)
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Fig. 5.— The OH 3080 Å emission image was recorded at the Kitt
Peak Burrell Schmidt telescope UT 1997 April 8 and used to make the
average OH radial profile shown as the top set of data points on the
graph.
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FP spectra of Hale-Bopp in [O1] 6300 Å
� 1 � FOV covers entire [O I] coma
� Aperture summation gives total

�=)I+G-0/
production rate

Fig. 6.— FP spectra of comet Hale-Bopp. WHAM 1997 March 5 (left) and
50 mm FP 1997 April 14 (right).
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[O1] 6300 Å Spatial Information

� WHAM images, WIYN Hydra and Densepak spectra
� Shows unexpected asymmetry (see below)
� Radial profiles of [O I] distribution indicates OH branching ratio more

likely cause of large [O I] production than
� � �

branching ratio

Fig. 7.— Hale-Bopp 1997 March 5 image with [O I] emission shown in gray
scale, dust in contours, and circles showing positions of the Hydra annuli. The
asymmetry accounts for � 13% of the [O I] emission.
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Fig. 8.— [O I] 6300 Å radial profiles from WHAM and WIYN MOS data
plotted with OH radial profile (top).
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Water production rate history

� OH 3080 Å (Harris et al. 2002), OH radio (e.g. Colom et al. 1999), ��� �
(Combi et al. 2000),

�����
IR (Dello Russo et al. 2000) [O I] 6300 Å used

to derive Q(
� � �

)
� Problem [O I] measurements give Q(

� � �
) rates that are high by a factor of

3–4 (fig. 9)
� Likely solution to the problem: standard theoretical OH cross section at
�D� � (van Dishoeck & Dalgarno 1984) probably too small

� Nee & Lee (1984) measured cross section at ��� � fixes the problem
� Problem with this solution: Nee & Lee cross section too high everywhere

else
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Fig. 9.— Q(
� � �

) values from various works. Open symbols denote production
rates derived with the standard OH

& �=)I+K-
/
branching ratio. Filled symbols

are the same but with the branching ratio from Morgenthaler et al. (2001).
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Tailward Asymmetry seen in OH and [O1] 6300 Å

� Between ion and dust tails
� Possibly neutrals accelerated by ions (Harris et al. 2002)
� Some tailward [O I] might be caused by collisional excitation (analysis not

complete)
� OH probably not caused by an extra source

Fig. 10.— Quadrant-by-quadrant variation of the OH radial profile from
its azimuthally averaged value, where the tailward quadrant is 10–100 ]
(Harris et al. 2002).
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Fig. 11.— Comparison of WHAM and Hydra [O I] data. The black triangles
show the azimuthal distribution of the [O I] surface brightness at a radius of
6 arcminutes ( � 360,000 km) is peaked between the dust tail and the ion tail.
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H ^ observations

� High resolving power 50mm FP at the McMath-Pierce solar telescope
� 4 6 .1 FOV centered � 5 6 sunward of nucleus to avoid

� � ��B
line

� Currently completing reduction
� Preliminary results: line widths narrower than comet Halley implies faster

collisional thermalization of fast H atoms (dissociation products) in Hale-
Bopp’s dense coma

� Monte Carlo model of coma that includes opacity effects for solar ��� �
needed to properly interpret line profiles
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Fig. 12.— Fabry-Pérot (FP) ring image and spectrum of Hale-Bopp in���
recorded UT 1997 April 16 03:18. The outline shows the section

of the image used to make the spectrum. The spectrum is fit with two
variable Gaussians, a sloping continuum and two fixed Gaussians for
the Galaxy.
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[C1] 9850 Å observations

� 50mm FP at the McMath-Pierce solar telescope
� Crude mapping shows radial distribution not consistent with photodissoci-

ation source
� Need collisional excitation calculations to fully interpret

Fig. 13.— Example [C I] 9850 Å Fabry-Pérot ring image (top) showing
the [C I] emission line. The ring that extends beyond the mirror image
is terrestrial OH 9848.48 Å reflecting off the heliostat superstructure.
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To Do

� Produce global coma models incorporating all known coma physics

– currently modeling is done piece-meal: a hydro code here, a Monte-
Carlo code there, etc.

� Use data to constrain models, finding which atomic and molecular con-
stants need more lab study

� Only model free parameters should be outgassing rates of major species
� Figure out relation between intrinsic composition and outgassing rates
� Derive intrinsic abundances
� Repeat for all observable comets over as many perihelion passages as pos-

sible
� Use abundance data to reconstruct evolution of solar nebula
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